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The stability of a horizontal shear current under surface gravity waves is investigated
on the basis of the Rayleigh equation. As the differential operator is non-normal, a
standard modal analysis is not effective in capturing the transient growth of a pertur-
bation. The representation of the stream function by a suitable basis of bi-orthogonal
eigenfunctions allows one to determine the maximum growth rate of a perturbation.
It turns out that, in the considered range of parameters, such a growth rate can be
two orders of magnitude larger than the maximum eigenvalue obtained by standard
modal analysis.

1. Introduction
A long-standing problem in fluid mechanics is the stability of a shear flow bounded

by long-crested gravity waves. After Burns (1953), this topic received wide attention
both from a theoretical (see Yih 1972; Shrira 1993; Longuet-Higgins 1998; Miles
2001a, b) and a numerical point of view (Caponi et al. 1991; Morland, Saffman &
Yuen 1991). The instability is explained in terms of the critical-layer theory developed
by Miles (1957) to study the generation of waves by a shear wind.

From a physical point of view, as the wind starts blowing on a flat interface between
air and water, shear stress transfers part of the momentum to a surface drift. Shemdin
(1972) estimated that the surface drift is about 3 % of the asymptotic wind. Therefore,
the direct formation of waves through the Miles mechanism is simultaneous to the
formation of a concave shear current right under the interface which, if unstable, can
contribute to the generation of waves.

For the coupled wind–current system (including surface tension), growth rates and
phase speeds have been studied numerically by Valenzuela (1976). Kawai (1979)
extended the work by combining numerical and experimental results, considering a
reference wind speed ranging from 4 to 8 m s−1. He measured growth rates, phase
speeds and frequencies when wavelets start appearing on the surface. Numerical
results were consistent with the measurements. A further contribution was given by
van Gastel, Janssen & Komen (1985) who found that the growth rate is very sensitive
to the shape of the wind profile, while the influence of changes in the current profile
is much smaller.

In the present study, we restrict ourselves to the de-coupled problem: we neglect
the generation of waves by wind and assume that a stationary concave shear current
is established and maintained. On the basis of a large amount of recent literature, we
suspect that the instability of such a base flow has been overlooked in the past and
new results on the growth rates can be discussed. More specifically, we investigate
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the relevance of a non-normal mode analysis in the determination of the growth rate
of perturbations of an unstable shear flow. In transient growth of shear flows, the
perturbations that exhibit the largest growth rates may not correspond to the largest
eigenvalues of the linearized operator.

The starting point of our analysis is the Rayleigh equation, obtained from the
Euler equations, assuming small perturbations of a base shear flow. A classical linear
stability analysis leads to the determination of the spectrum of the linearized operator
(Morland et al. 1991). A positive imaginary part of the phase velocity for some
wavenumber is the signature of instability (Drazin & Reid 2004). Such a standard
linear analysis provides an insight into the stability properties of the system (with the
exception of the neutral case) and allows the most rapidly growing component of the
perturbation to be identified; in general, for sufficiently long time, the eigenfunction
corresponding to the largest imaginary eigenvalue will dominate.

This approach, depending on the form of the evolution operator, may not
furnish information on the most rapidly growing perturbation at initial time. In
the specific case of interest, a shear flow is characterized by the non-orthogonality
of the eigenfunctions that compose the perturbation (Schmid & Henningson 2001).
The energy of the perturbation, while being a quadratic function of the velocity
components, depends on the mutual product of the eigenfunctions corresponding to
different wavenumbers. These wavenumbers may combine, giving rise to a transient
behaviour different from the asymptotic one (Farrell & Moore 1992).

The literature concerning non-normal analysis of shear flow is quite extended in
the case of flow between rigid walls, where the classical theorems by Rayleigh and
Fjørtoft apply (see for instance Schmid & Henningson 2001). Much less is known
when a free surface bounds a fluid subject to gravity. Olsson & Henningson (1994)
considered a viscous free-surface fluid flowing down an inclined plate. The fluid layer
is very shallow and the gravity force establishes a parabolic current. Using a velocity–
vorticity formulation, they showed that, for moderate times, the transient growth
dominates over the exponential growth and that its characteristics are similar to the
transient growth found in other shear flows. Farrell & Ioannou (2008) addressed
the problem of wind-wave generation by considering an atmospheric baseflow of
logarithmic type without current. The Rayleigh equation describes the dynamics of
the air-flow perturbation, thus suggesting non-orthogonality of eigenfunctions. A
non-normal analysis reveals that the largest growth rates may be much greater than
the maximum value predicted by modal analysis.

In this paper, we address the stability of a smooth concave monotonic free-
surface shear flow by non-normal analysis of the Rayleigh equation. The aim is
to compare the maximum eigenvalue provided by single-mode analysis with the
maximum growth rate of a non-modal perturbation at time t = 0. We show that,
exploring the space of parameters that characterize the base flow, the maximum
growth rate of the perturbation at initial time can be much larger than the maximum
eigenvalue.

The paper is organized as follows. In § 2, the mathematical problem is formulated
introducing the Rayleigh equation; its eigenfunctions are introduced and it is shown
that they are not mutually orthogonal. In § 3, a method for evaluating numerically
the maximum growth rate of a perturbation at time t = 0 is described; the results
are compared with the maximum eigenvalue for a given base velocity profile in
§ 4. Some basic notions on non-normal systems of eigenvectors are reported in the
Appendix.
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2. The Rayleigh equation
Our starting point is the Euler equations in two dimensions in the presence of a

gravitational field:

ut + uux + vuy +
px

ρ
= 0, (2.1)

vt + uvx + vvy +
py

ρ
= −g, (2.2)

where u(x, y, t) and v(x, y, t) are the horizontal and vertical components of the
velocity field, respectively; ρ is the density of the fluid, p(x, y, t) is the pressure and
g is the acceleration due to gravity. Subscripts denote differentiation. We choose a
coordinate system where the flat bottom is located at y = −h and the undisturbed
water elevation is y = 0. The following boundary conditions apply:

ζt + uζx = v, y = ζ, (2.3)

p = 0, y = ζ, (2.4)

v = 0, y = −h, (2.5)

where y = ζ (x, t) is the free-surface elevation.
It is well known that a shear velocity U (y) with flat free surface is a solution of

the equations above. We linearize around such an equilibrium state taking u =U (y)+
û(x, y, t) and restricting ourselves to small perturbations of the hydrostatic pressure:
p = ρgy + p̂(x, y, t). After introducing the streamfunction, u =ψy, v = −ψx , we look

for solutions of the form ψ(x, y, t) = ψ̂(y; k)ei(kx−ω(k)t), ζ (x, t) = ζ̂ (k)ei(kx−ω(k)t); after
some calculations, dropping the superscript, the Rayleigh equation is found:

ψyy −
(

k2 +
U ′′

U − c

)
ψ = 0, (2.6)

where c(k) = ω(k)/k is the phase velocity. Boundary conditions at the free surface are
obtained using the continuity of the pressure at the interface (equation (2.4)). From
the linearized horizontal component of the momentum equation, (2.1), the kinematic
boundary condition (2.3) can be rewritten as:

−iω(k)ζ (k) + ikUζ (k) = −ikψ, y = 0, (2.7)

and, disregarding non-hydrostatic contributions of the pressure, we obtain:

(U − c)2 ψy − (U ′(U − c) + g)ψ = 0, y = 0, (2.8)

ψ = 0, y = −h. (2.9)

The Rayleigh equation (2.6), with boundary conditions (2.7)–(2.9), reads as an
eigenvalue problem. The Rayleigh equation can have a singular point where the
baseflow velocity is equal to the phase velocity (Re c(k)). However, we are interested
in instability and we look for wave speeds with non-zero imaginary part.

For a given wavenumber k in the x-direction and a given shear profile U (y), the
eigenvalue problem (2.6)–(2.9) can be solved numerically, after fixing the uniqueness
of the eigenfunction solution by a normalization condition. We follow Morland et al.
(1991) taking

ψy(0; k) = 1. (2.10)
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The phase velocity of the kth component is fixed by the boundary condition (2.8):

c(k) = U (0) − U ′(0)ψ(0; k)

2
± 1

2

√
(U ′(0)ψ(0; k))2 + 4gψ(0; k). (2.11)

Eigenfunctions of the Rayleigh equation corresponding to different wavenumbers are
not mutually orthogonal. This can be shown by considering the following integration
by parts:∫ 0

−h

ψy(y; k1)ψ
∗
y (y; k2) dy = −

∫ 0

−h

ψ(y; k1)ψ
∗
yy(y; k2) dy + [ψ(y; k1)ψ

∗
y (y; k2)]

0
−h. (2.12)

Similarly,∫ 0

−h

ψy(y; k1)ψ
∗
y (y; k2) dy = −

∫ 0

−h

ψyy(y; k1)ψ
∗(y; k2) dy + [ψy(y; k1)ψ

∗(y; k2)]
0
−h.

(2.13)
Subtracting the latter expressions and using (2.6) with its boundary conditions, it
follows that∫ 0

−h

[(
k2

2 +
U ′′

U + c∗(k2)

)
−

(
k2

1 +
U ′′

U + c(k1)

)]
ψ(y; k1)ψ

∗(y; k2) dy

= ψ(0; k1) − ψ∗(0; k2) �= 0. (2.14)

Therefore, the eigenfunctions of the Rayleigh equation are not mutually orthogonal.
Note that this characterization is due to the boundary conditions at the free surface.

For a given shear profile U (y), the phase velocity c(k) defines the linear stability of
the system: if Im(c(k)) > 0 for some k, the system is unstable. Nevertheless, because the
operator is non-normal, such a dispersion relation provides no information about the
largest perturbation growth rate, which is due to be determined by a different kind
of approach.

3. Stability and growth rate
Some remarks on the relation between stability and normality can be stated

effectively in the framework of dynamical systems, i.e. in finite-dimensional spaces.
The strategy we use for finding the maximum growth rate is introduced in such a
simple framework first and then applied to the Rayleigh equation in the next section.

Given an ordinary differential equation, we consider its linearized form around the
equilibrium state w0 ∈ �n:

ẇ(t) = A(w(t) − w0). (3.1)

where A is the resulting linear operator. The equilibrium configuration is stable in
the sense of Lyapunov if ∀ε > 0, ∃δ such that (see, for instance, Drazin & Reid 2004)

|w(0) − w0| < δ ⇒ |w(t) − wo| < ε. (3.2)

A closer look at the definition above reveals that it provides no information about
the behaviour of |w(t)−wo|2 at short times: at t = 0, the solution can drift away from
wo even though the equilibrium is stable.

Linear stability analysis provides a sufficient condition for stability: if all the eigen-
values of A have negative real part, the equilibrium point wo is stable. For a normal
operator, this implies that the energy norm of the solution decreases monotonically
in time, but this statement is not true for non-normal operators, because of the lack
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of orthogonality: even for a stable configuration, there may exist perturbations that
trigger a transient growth of the energy of the solution. As the time of growth of
such a perturbation can be large compared to the typical observation time of the
physical system, it is not possible to extrapolate information on finite-time behaviour
on the basis of standard modal analysis. The modal analysis is a tool to predict
stability (or instability) according to the definition above, which is intrinsically of an
asymptotic nature and no information is provided about the transient regime.

As the energy is the basic physical quantity of interest, we focus on the time
evolution of a suitable norm of the unknown. Given the differential problem (3.1),
the energy is defined as

E(t) =
〈w(t), w(t)〉

2
, (3.3)

where angle brackets indicate a suitable internal product.
We are here interested in maximizing the energy growth at t =0. The time derivative

of the energy is

2Ė(t) = 〈ẇ(t), w(t)〉 + 〈w(t), ẇ(t)〉
= 〈Aw(t), w(t)〉 + 〈w(t), Aw(t)〉
= 〈(A + A∗)w(t), w(t)〉, (3.4)

where A∗ denotes the adjoint operator of A. Determining the maximum energy growth
at initial time corresponds to finding the maximum eigenvalue of (A + A∗)/2 (see
Schmid & Henningson 2001).

Our strategy for investigating the spectrum of A + A∗ consists in using directly the
spectrum of the original operator A, without the explicit introduction of the adjoint
operator. The maximum eigenvalue of A + A∗ is related to the eigenvectors and
eigenvalues of A in a form that enlightens the geometric nature of non-normality.
In fact, let w = wiri , where {wi} are the vector components in the basis of the
eigenvectors {ri}. The convention of sum over repeated indixes applies. Equation (3.4)
can be rewritten as:

〈(A + A∗)w, w〉 = 〈Aw, w〉 + 〈A∗w, w〉
= 〈Awiri, wj rj 〉 + 〈A∗wiri, wj rj 〉. (3.5)

Using (A 9) in the Appendix, connecting the eigenvectors {rj } of A to the eigenvectors
{�j } of the adjoint operator, the latter can be rewritten as:

〈(A + A∗)w, w〉 = 〈wiAri, wjajk�k〉 + 〈A∗wiaik�k, wj rj 〉
= 〈wiλiri, wjajk�k〉 + 〈wiaikλ

∗
k�k, wj rj 〉

= wiλiw
∗
j a

∗
jk〈ri, �k〉 + wiaikλ

∗
kw

∗
j 〈�k, rj 〉. (3.6)

The bi-orthogonality condition (see (A 6) in the Appendix) allows us to simplify (3.6)
as follows:

〈(A + A∗)w, w〉 = wiλiw
∗
j a

∗
ji + wiaijλ

∗
jw

∗
j

= w∗
j (λia

∗
ji + aijλ

∗
j )wi, (3.7)

where Re(.) indicates the real part of the argument. Therefore, the maximum
eigenvalue of A + A∗ is the maximum eigenvalue of the Hermitian matrix

〈ri, rj 〉(λi + λ∗
j ), (3.8)
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(no sum on i and j ) corresponding to the largest eigenvalue of A for normal matrices
(that is when 〈ri, rj 〉 =2 Re(λi)δij ).

Matrices of the type (3.8) are typically ill-conditioned: eigenvalues can differ for
order of magnitude. However, our major interest is in determining the maximum
eigenvalue, so the numerical difficulties that can arise in characterizing the whole
spectrum can be disregarded in the present context.

The simplest way to obtain numerically the maximum eigenvalue of a matrix is by
the power method (see, for instance, Quarteroni, Sacco & Saleri 2007). Defining

wn+1
i = 〈ri, rj 〉(λi + λ∗

j )w
n
j , (3.9)

the maximum eigenvalue of the matrix (3.8) is given by

νmax = lim
n→+∞

wn
i

(
wn+1

i

)∗

wn
j

(
wn

j

)∗ . (3.10)

Summarizing, the illustrated methodology allows us to determine the maximum
growth rate of a perturbation at the initial time as the maximum eigenvalue of the
linear operator (3.8), calculated from the eigenfunctions and eigenvalues of the original
operator. Note that a suitable internal product 〈.〉 must be specified, possibly on the
basis of physical arguments. Moreover, this approach leads to the determination of
the maximum eigenvalue of A+A∗, which is our goal, without giving information on
the corresponding eigenvector; designing the optimal perturbation calls for a different
approach not addressed herein (see Farrell & Ioannou 2008).

4. Maximum growth rate: results and discussion
The methodology outlined in the section above can be applied to determine the

maximum growth rate of a perturbation of a shear current. For a given wavenumber k

in the x-direction and a given velocity profile U (y), the eigenvalue problem (2.6)–(2.9)
is solved numerically, after fixing the uniqueness of the eigenfunction solution by
the normalization condition (2.10). Adopting a second-order implicit finite-difference
centred scheme to discretize (2.6) with boundary conditions (2.9) and (2.10), the
resulting tridiagonal system provides a solution for a given value c(k). The phase
velocity is fixed by the boundary condition (2.11). Using the resulting c(k) in the
differential problem (2.6)–(2.9) iteratively yields the solution.

There is some degree of freedom in investigating the behaviour in time of the
kinetic or the potential as well as the total energy of the perturbations; every
choice corresponds to choosing a specific norm of the solution. Driven by physical
motivations, here we concentrate on the maximum growth in time of the total energy
of the perturbation, that is

2E = ρ

∫ 0

−h

(|ψy |2 + |ψx |2) dy + ρgζ 2. (4.1)

The time evolution of the kth component of the solution in x =0 can be written as
follows:

ψ(y, t; k) = ψk(y)e−iω(k)t . (4.2)

Therefore,

∂

∂t
ψ(y, t; k)|t=0 = −iω(k)ψk(y). (4.3)
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Figure 1. The unperturbed current profile with Uo =1ms−1 for:
—, α = 1; – – –, 0.1; · - ·, 0.01.

The maximum growth rate of a perturbation at time t =0 is determined by the largest
eigenvalue of the form (3.7), after the identification of eigenvectors, eigenvalues and
the scalar product of the problem at hand. Using the linearized kinematic condition
(2.7), we must calculate the maximum eigenvalue of the Hermitian operator:

a(k1, k2) = (ω∗(k2) − ω(k1))

∫ 0

−h

(ψy(y, k1)ψ
∗
y (y, k2) + k1k2ψ(y, k1)ψ

∗(y, k2)) dy

+ (ω∗(k2) − ω(k1))g
ψ(0, k1)

c(k1) − U (0)

ψ∗(0, k2)

c∗(k2) − U (0)
. (4.4)

As a specific example of shear flow, we consider the exponential profile:

U (y) = Uo

e(y+1)/α − 1

e1/α − 1
, (4.5)

where Uo represents the surface velocity while α is a parameter controlling the shear-
layer thickness. Figure 1 shows a plot of the base flow for Uo = 1 m s−1 and different
values of the parameter α. This profile resembles the one proposed by Morland et al.
(1991) for α � 1. It has no inflection point, as the Rayleigh theorem does not hold
for free-surface flow. Modal growth rates clearly depend on the specific base flow;
however, the examples reported by Morland et al. (1991) suggest that, for a given
vorticity, the stability characterization weakly depends on the specific smooth shear
function. Similar results have been obtained by van Gastel et al. (1985) who adopt a
linear-logarithmic, exponential or error-function profile.

Eigenvalues and growth rates are computed by dividing the depth (1 m) into a
finite number of intervals. The eigenvalue problem (2.6) with corresponding boundary
conditions is then solved by an implicit finite-difference method with kmin � k � kmax .
The nonlinearity due to the dependence of c(k) on ψ(0; k) (see the dispersion relation
(2.11)) is handled iteratively by fixed-point iterations. Very slow convergence is
achieved when the vertical coordinate is near to the depth y such that U (y) = Re(c), a
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Figure 2. Maximum imaginary eigenvalue of the perturbation at time t = 0 for a given shear
flow of exponential type. For the stable region, all eigenvalues have null positive imaginary
part up to computing accuracy.
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Figure 3. Maximum growth rate of an initial perturbation at time t = 0 for a given shear
flow of exponential type.

difficulty reported also by Valenzuela (1976) and Morland et al. (1991). The maximum
wavenumber kmax corresponds to the wavelenght such that capillarity, not resolved
in the present model, starts to play a role (2 cm), while kmin is sufficiently small that
all frequencies with non-null positive imaginary part are retained. The maximum
eigenvalue of (4.4) is obtained by the power method outlined in § 3 where finite
differences approximate derivatives.

Numerical results are shown in figures 2 and 3: the maximum value of Im(ω(k))
(figure 2) should be compared with the maximum perturbation growth rate (figure 3)
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as a function of the parameter α that controls the shear-layer thickness and surface
velocity Uo.

The maximum surface velocity ranges between 0.2 m s−1, the minimum value
exhibiting instability for some value of α, and 1 m s−1, a maximum reasonable physical
value. The parameter α ranged in the computations between α = 0.01 and α = 1,
corresponding approximately to a shear thickness between 0.05 and 1. For large α,
the flow becomes stable, thus in figure 1, we restrict ourselves to the more significant
range 0.01 � α � 0.08. The stability region corresponds to Im(ω(k)) � 0 (up to round-
off error). For small surface velocity (Uo � 0.2) the flow is always stable. For large
surface velocity, instability appears if the shear layer is thin enough, i.e. for large
enough vorticity of the base flow.

In the instability region, maximum imaginary eigenvalues are located at the top left-
hand corner (see figure 2), where the vorticity of the base flow is maximum. Conversely,
the maximum transient growth rate is predicted around α = 0.024 (figure 3), thus
confirming that non-normality plays a role. More important, transient growth rate is
larger than the maximum eigenvalue in any point of the considered portion of the
(α, Uo)-plane. For values of α around 0.024 and high surface velocity, such a ratio
raises up to 60.

From a physical point of view, a shear current is typically established by the wind
action and the velocity at the surface is of the order 3 % of the asymptotic wind.
Therefore, we expect that non-modal analysis is relevant for wind speed larger than
15 m s−1.

Our results confirm that the knowledge of the spectrum of the Rayleigh operator
may yield poor information about maximum growth rate of the perturbations at
short time and a non-normal analysis is required. This conclusion is along the lines
of many other findings in shear flows (Schmid & Henningson 2001).

Appendix
In this section, we summarize some notions on a bi-orthogonal basis. The theory is

restricted to finite-dimensional spaces, a simpler framework that nevertheless allows
us to point out the crucial aspects of non-normality: no issues of convergence and
completeness are addressed in the present work.

Given two normed spaces X, Y and an operator A : X → Y , its adjoint A∗ : Y → X

is defined by

〈w2, Aw1〉
Y

= 〈A∗w2, w1〉
X
, ∀w1 ∈ X, w2 ∈ Y. (A 1)

where 〈w2, Aw1〉
Y

and 〈A∗w2, w1〉
X

denote the scalar product in Y and X, respectively.
An operator is normal if it commutes with its adjoint. For any A, the operator A∗A

is self-adjoint and is therefore normal. The eigenvectors {ei} of a normal operator
with distinct eigenvalues μi are mutually orthogonal. In fact

〈A∗Aei, ej 〉 = 〈μiei, ej 〉 = μi〈ei, ej 〉
= 〈ei, AA∗ej 〉 = 〈ei, μ

∗
j ej 〉 = μj 〈ei, ej 〉. (A 2)

In general, the eigenvalues and eigenvectors of A∗A differ from those of A (and A∗).
If λi is an eigenvalue of A, λ∗

i is an eigenvalue of A∗. In fact, let rj , �i be eigenvectors
of A and A∗, respectively, then

〈�i, Arj 〉 = 〈λ∗
i �i, rj 〉 = 〈A∗�i, rj 〉, ∀rj . (A 3)
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Therefore

(A∗ − λ∗
i )�i = 0, (A 4)

and the eigenvectors of the adjoint operator form a biorthogonal basis:

〈A�i, rj 〉 = λi〈�i, rj 〉 = 〈�i, A
∗rj 〉 = λj 〈�i, rj 〉, (A 5)

and it follows that

〈�i, rj 〉 = ciδij . (A 6)

The adjoint basis {�i} can be suitably normalized so that ci =1.
Thanks to the biorthogonality condition, the relation between the two bases can be

simply calculated. In fact, if

ri = aij �j , (A 7)

multiplying both sides by rk , it follows that

〈ri, rk〉 = 〈aij �j , rk〉 = aij 〈�j , rk〉 = aik〈�k, rk〉, (A 8)

and therefore,

aik = 〈ri, rk〉, (A 9)

where the normalization condition has been used.

REFERENCES

Burns, J. C. 1953 Long waves in running water. Proc. Camb. Phil. Soc. 49, 695–706.

Caponi, E. A., Yuen, H. C., Milinazzo, F. A. & Saffman, P. G. 1991 Water wave instability induced
by a drift layer. J. Fluid Mech. 222, 297–313.

Drazin, P. J. & Reid, W. H. 2004 Hydrodynamic Stability . Cambridge University Press.

Farrell, F. & Ioannou, P. J. 2008 The stochastic parametric mechanism for growth of wind-driven
surface water waves. J. Phys. Oceanogr. 38, 862–879.

Farrell, F. & Moore, A. M. 1992 An adjoint method for obtaining the most rapidly growing
perturbation to oceanic flows. J. Phys. Oceanogr. 22, 338–349.

van Gastel, K., Janssen, P. A. E. M. & Komen, G. J. 1985 On phase velocity and growth rate of
wind-induced gravity-capillary waves. J. Fluid Mech. 161, 199–216.

Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their
evolution to wind waves. J. Fluid Mech. 93, 661–703.

Longuet-Higgins, M. S. 1998 Instabilities of a horizontal shear flow with a free surface. J. Fluid
Mech. 364, 147–162.

Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185–204.

Miles, J. W. 2001a Gravity waves on shear flows. J. Fluid Mech. 443, 293–299.

Miles, J. W. 2001b A note on surface waves generated by shear-flow instability. J. Fluid Mech. 447,
173–177.

Morland, L. C., Saffman, P. G. & Yuen, H. C. 1991 Waves generated by shear layers instabilities.
Proc. R. Soc. Math. Phy. Sci. 433, 441–450.

Olsson, P. J. & Henningson, D. S. 1994 Optimal disturbances in watertable flow. Stud. Appl. Maths
94, 183–210.

Quarteroni, A., Sacco, R. & Saleri, F. 2007 Numerical Mathematics . Springer.

Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows . Springer.

Shemdin, O. H. 1972 Wind generated current and phase speed of wind waves. J. Phys. Oceanogr. 2.

Shrira, V. I. 1993 Surface waves on shear currents: solution of the boundary-value problem.
J. Fluid Mech. 252, 565–565.

Valenzuela, G. R. 1976 The growth of gravity–capillary waves in a coupled shear flow. J. Fluid
Mech. 76, 229–250.

Yih, C. S. 1972 Surface waves in flowing water. J. Fluid Mech. 51, 209–220.




